

## Integral University, Lucknow

| Effective from Session: 2024-2025 |                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |   |   |   |   |  |  |  |  |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---|---|---|---|--|--|--|--|
| Course Code                       | ME601                                                                                                                                           | <b>Title of the Course</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ADVANCED MANUFACTURING PROCESSES | L | Т | Р | C |  |  |  |  |
| Year                              | II                                                                                                                                              | Semester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | III                              | 3 | 1 | 0 | 4 |  |  |  |  |
| Pre-Requisite                     | None                                                                                                                                            | Co-requisite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Co-requisite None                |   |   |   |   |  |  |  |  |
| Course Objectives                 | <ol> <li>2. To analyze<br/>advanced ma</li> <li>3. To builds a<br/>problems.</li> <li>4. Create ana<br/>manufacturi<br/>5. Understan</li> </ol> | <ol> <li>To understand the fundamentals and advanced techniques related to manufacturing processes.</li> <li>To analyze the applied aspects of manufacturing processes, and to evaluate a sound analytical basis these advanced manufacturing processes.</li> <li>To builds a foundation of capability for the solution, analysis and synthesis of a wide variety of manufacturing problems.</li> <li>Create analytical approaches in conjunction with applied case studies based practical's, learning to control a manufacturing process for optimal production.</li> <li>Understand the principles and concepts of smart and digital manufacturing, including their architecture, technologies, and applications in modern industrial settings.</li> </ol> |                                  |   |   |   |   |  |  |  |  |

| Course Outcomes |                                                                                                                                         |  |  |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| CO1             | Classify the various unconventional machining processes and Demonstrate the Mechanical energy based unconventional machining processes. |  |  |  |  |  |
| CO2             | Demonstrate the Chemical and Electrical energy based unconventional machining processes.                                                |  |  |  |  |  |
| CO3             | Demonstrate the Thermal energy based unconventional machining processes.                                                                |  |  |  |  |  |
| CO4             | Classify the various hybrid unconventional machining techniques and Demonstrate the unconventional welding processes                    |  |  |  |  |  |
| CO5             | Develop skills in implementing AM and digital twin technology for product design, optimization, and prototyping.                        |  |  |  |  |  |

| Unit<br>No. | Title of the Unit                                                 | Content of Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Contact<br>Hrs. | Mapped<br>CO |
|-------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 1           | Introduction<br>to Advanced<br>Machining<br>processes             | Classification of advanced machining processes; consideration in process selection.<br><b>Mechanical Metal Removal Process:</b> Basic principles; mechanism of metal removal; variables governing the processes; tool design and economic consideration; applications and limitations, of Ultrasonic machining, Abrasive Jet and Abrasive Water Jet Machining                                                                                                                                                                                                                                                                                                                    | 8               | CO1          |
| 2           | ECM and<br>EDM<br>Machining<br>Process                            | <ul> <li>Electro-chemical Process: Fundamentals of the ECM and ECG techniques; mechanism of metal removal; design of tooling; choice of process parameters; surface finish and accuracy; economic aspects of ECM; electro-chemical deburring; and honing.</li> <li>EDM PROCESS: Classification; general principles, applications advantages and limitations of EDM processes, mechanism of metal removal in EDM, selection of EDM pulse generator, tool electrode and dielectric; machining accuracy, surface finish and surface damage in EDM; process parameters, wire EDM.</li> </ul>                                                                                         | 8               | CO2          |
| 3           | EBM, PAM<br>and LBM<br>Machining<br>Process                       | EBM, PAM and LBM Processes: Classification; general principles, applications<br>advantages and limitations of processes. Generation and control of electron beam for<br>machining in EBM.<br>Generation and application of plasma for metal cutting in PAM, plasma torches.<br>Basics of laser beam machining; thermal phenomenon due to laser work surface<br>interaction; cutting speeds and accuracy of cut; applications and limitations.<br>Improving the efficiency of laser machining process. Process details of ion beam<br>machining and its applications.                                                                                                             | 8               | CO3          |
| 4           | Hybrid<br>machining,<br>Metal forming<br>and welding<br>processes | Introduction to hybrid unconventional machining processing like ECDM, ECAM,<br>Abrasive EDM, etc.<br>Metal Forming<br>Theory and application of Contour roll forming, stretch forming explosive forming<br>etc.<br>Unconventional Welding: Theory and applications of electron beam welding, Laser<br>beam welding, Ultrasonic welding, Solid state diffusion and explosive welding<br>process.                                                                                                                                                                                                                                                                                  | 8               | CO4          |
| 5           | Additive and<br>digital<br>manufacturin<br>g                      | <b>Digital Twin Technology,</b> Concept of digital twin and its applications in manufacturing, Use of digital twins in product development, Case studies on digital twin implementations in industry<br><b>Additive Manufacturing (AM),</b> Overview of AM technologies and their applications, AM materials and their properties, Introduction to Various machines viz., FDM,SLA & SLS, Emerging trend in AM.<br>Understanding 3D printing, Application of tolerances and fitments considering 3D printing processes. Understanding process algorithm of slicing software and slicing techniques, Different Applications like- Functional prototypes, Health care products etc. | 8               | CO5          |
|             | ce Books:                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                 |              |
|             | Ũ                                                                 | Processes, R. K. Springborn, American Society of Tool and Manufacturing Engineers, 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 967.            |              |
| Advanc      | e Machining Process                                               | ses, V.K. Jain, Allied Publishers Pvt Limited, 2009.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |              |

Advanced Machining Processes: Nontraditional and Hybrid Machining Processes, Hassan Abdel-Gawad El-Hofy, McGraw Hill LLC, 2005.

Digital Manufacturing The Industrialization of "Art to Part" 3D Additive Printing, Elsevier, 1st Edition, 2022,

Digital Manufacturing for SMEs, Jack C Chaplin, Claudia Pagano, Santi Fort, ERASMUS+ project Digit-T: Digital Manufacturing Training System for SMEs (2017-1-UK01-KA202036807)

Digital Twin: A Complete Guide For The Complete Beginner, Vijay Raghunathan, Santanu Deb Barma, Kindle store, 2017

Building Industrial Digital Twins: Design, develop, and deploy digital twin solutions for realworld industries using Azure Digital Twins, Shyam Varan Nath, Pieter van Schalkwyk, Packt Publishing; 1st edition,2021

e-Learning Source:

https://www.youtube.com/watch?v=N81fnQZY1TQ&list=PLWCscP8J8VQ5RRhLPvLOBGCdzdjQ0-\_5S

https://www.youtube.com/watch?v=\_TEBKq9i9a4&list=PLFW6lRTa1g81r7obROdMofsKqWz2Z-mLw

https://www.youtube.com/watch?v=D2Z6kHFuG0Y

https://www.youtube.com/watch?v=JODNOOi57SE

https://www.youtube.com/watch?v=pyNBEJbQ5yA

## 1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

|                  |     | Course Articulation Matrix: (Mapping of COs with POs and PSOs) |     |     |     |     |     |     |     |      |      |      |      |      |      |
|------------------|-----|----------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| PO-<br>PSO<br>CO | PO1 | PO2                                                            | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
| CO1              | 3   | 3                                                              | 3   | 3   | 3   | 1   | 1   | -   | 2   | -    | 3    | 2    | 3    | 3    | 3    |
| CO2              | 3   | 3                                                              | 3   | 3   | 3   | 1   | 1   | -   | 2   | -    | 3    | 2    | 3    | 3    | 3    |
| CO3              | 3   | 3                                                              | 3   | 3   | 3   | 1   | 1   | -   | 2   | -    | 3    | 2    | 3    | 3    | 3    |
| CO4              | 3   | 3                                                              | 3   | 3   | 3   | 1   | 1   | -   | 3   | -    | 3    | 3    | 3    | 3    | 3    |
| CO5              | 3   | 3                                                              | 3   | 3   | 3   | 2   | 1   | -   | 3   | -    | 3    | 3    | 3    | 3    | 3    |

| Name & Sign of Program Coordinator | Sign & Seal of HoD |
|------------------------------------|--------------------|